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Tracking Simulation Overview
You can build a complete tracking simulation using the functions and objects supplied in this toolbox.
The workflow for sensor fusion and tracking simulation consists of three (and optionally four)
components. These components are

1 Use the tracking scenario generator to create ground truth for all moving and stationary radar
platforms and all target platforms (planes, ships, cars, drones). The trackingScenario class
models the motion of all platforms in a global coordinate system called scenario coordinates.
These objects can represent ships, ground vehicles, airframes, or any object that the radar
detects. See “Orientation, Position, and Coordinate” for a discussion of coordinate systems.

2 Optionally, simulate an inertial navigation system (INS) that provides radar sensor platform
position, velocity, and orientation relative to scenario coordinates.

3 Create models for each radar sensor with specifications and parameters using the
monostaticRadarSensor, radarSensor, or radarEmitter objects. Using target platform
pose and profile information, generate synthetic radar detections for each radar-target
combination. Methods belonging to trackingScenario retrieve the pose and profile of any
target platform. The trackingScenario generator does not have knowledge of scenario
coordinates. It knows the relative positions of the target platforms with respect to the body
platform of the radar. Therefore, the detector can only generate detections relative to the radar
location and orientation.

If there is an INS attached to a radar platform, then the radar can transform detections to the
scenario coordinate system. The INS allows multiple radars to report detections in a common
coordinate system.

4 Process radar detections with a multi-object tracker to associate detections to existing tracks or
create tracks. Multi-object tracks include trackerGNN, trackerTOMHT, trackerJPDA and
trackerPHD. If there is no INS, the tracker can only generate tracks specific to one radar. If an
INS is present, the tracker can create tracks using measurements from all radars.

The flow diagram shows the progression of information in a tracking simulation.
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Creating a Tracking Scenario
You can define a tracking simulation by using the trackingScenario object. By default, the object
creates an empty scenario. You can then populate the scenario with platforms by calling the
platform method as many times as needed. A platform is an object (moving or stationary), which
can either be a sensor, a target, or any other entity. A platform can be modeled as a point or a cuboid
by specifying the Dimensions property of Platform. After creating a platform, you can specify the
motion of the platform by using its Trajectory property. To configure a trajectory, you can use
waypointTrajectory, which allows you to specify the 3-D waypoints that the platform follows and
the associated arrival time for each waypoint. Alternately, you can use kinematicTrajectory,
which allows you to specify the 3-D acceleration and angular velocity of the platform with initial pose
and translational velocity. You can also specify the orientation of a platform using the Orientation
property of kinematicTrajectory or waypointTrajectory.

Run the simulation by calling the advance method on the trackingScenario object in a loop, or by
calling the record method to run the simulation all at once. You can set the simulation update
interval using the UpdateRate property in the trackingScenario object. You can set the
properties of a platform or leave them to their default value. You can set them all except for
PlatformID. The complete list of Platform properties is shown here.

Platform Properties
PlatformID Scenario-defined platform ID.
ClassID User-specified platform classification ID.
Dimensions 3-D dimensions of a cuboid that approximates the

size of a platform and offset of the origin of the
platform body frame from the center of the
cuboid. The default value of Dimensions has all
fields equal to zero, which corresponds to a point
model.

Trajectory Platform motion, specified by
kinematicTrajecotry or
waypointTrajectory.

Signatures Platform signatures, specified as a cell array of
irSignature, rcsSignature, and
tsSignature objects. A signature represents
the reflection or emission pattern of a platform.

PoseEstimator A pose estimator, specified as a pose-estimator
object such as insSensor (default).

Emitter Emitters mounted on platform, specified as a cell
array of emitter objects, such as radarEmitter
or sonarEmitter.

Sensors Sensors mounted on platform, specified as a cell
array of sensor objects such as irSensor or
sonarSensor.

At any time during the simulation, you can retrieve the current values of platform properties using
the platformPoses and platformProfiles methods of the trackingScenario object. Both the
platformPoses and platformProfiles methods return properties of all platforms with respect to
the scenario's NED frame. You can also use the pose method of the Platform to return the
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properties of one specific platform. In addition, the Platform.targetPoses method, while similar,
returns properties of other platforms with respect to a specified platform.
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Create Tracking Scenario with Two Platforms
Construct a tracking scenario with two platforms that follow different trajectories.

sc = trackingScenario('UpdateRate',100.0,'StopTime',1.2);

Create two platforms.

platfm1 = platform(sc);
platfm2 = platform(sc);

Platform 1 follows a circular path of radius 10 m for one second. This is accomplished by placing
waypoints in a circular shape, ensuring that the first and last waypoint are the same.

wpts1 = [0 10 0; 10 0 0; 0 -10 0; -10 0 0; 0 10 0];
time1 = [0; 0.25; .5; .75; 1.0];
platfm1.Trajectory = waypointTrajectory(wpts1, time1);

Platform 2 follows a straight path for one second.

wpts2 = [-8 -8 0; 10 10 0];
time2 = [0; 1.0];
platfm2.Trajectory = waypointTrajectory(wpts2,time2);

Verify the number of platforms in the scenario.

disp(sc.Platforms)

    {1×1 fusion.scenario.Platform}    {1×1 fusion.scenario.Platform}

Run the simulation and plot the current position of each platform. Use an animated line to plot the
position of each platform.

figure
grid
axis equal
axis([-12 12 -12 12])
line1 = animatedline('DisplayName','Trajectory 1','Color','b','Marker','.');
line2 = animatedline('DisplayName','Trajectory 2','Color','r','Marker','.');
title('Trajectories')
p1 = pose(platfm1);
p2 = pose(platfm2);
addpoints(line1,p1.Position(1),p1.Position(2));
addpoints(line2,p2.Position(2),p2.Position(2));

while advance(sc)
    p1 = pose(platfm1);
    p2 = pose(platfm2);
    addpoints(line1,p1.Position(1),p1.Position(2));
    addpoints(line2,p2.Position(2),p2.Position(2));
    pause(0.1)
end
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Plot the waypoints for both platforms.

hold on
plot(wpts1(:,1),wpts1(:,2),' ob')
text(wpts1(:,1),wpts1(:,2),"t = " + string(time1),'HorizontalAlignment','left','VerticalAlignment','bottom')
plot(wpts2(:,1),wpts2(:,2),' or')
text(wpts2(:,1),wpts2(:,2),"t = " + string(time2),'HorizontalAlignment','left','VerticalAlignment','bottom')
hold off
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Radar Detections

The radar detectors monostaticRadarSensor and radarSensor generate measurements from
target poses.
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Simulate Radar Detections
The monostaticRadarSensor object simulates the detection of targets by a scanning radar. You can
use the object to model many properties of real radar sensors. For example, you can

• simulate real detections with added random noise
• generate false alarms
• simulate mechanically scanned antennas and electronically scanned phased arrays
• specify angular, range, and range-rate resolution and limits

The radar sensor is assumed to be mounted on a platform and carried by the platform as it
maneuvers. A platform can carry multiple sensors. When you create a sensor, you specify sensor
positions and orientations with respect to the body coordinate system of a platform. Each call to
monostaticRadarSensor creates a sensor. The output of monostaticRadarSensor generates the
detection that can be used as input to multi-object trackers, such as trackerGNN, or any tracking
filters, such as trackingKF.

The radar platform does not maintain any information about the radar sensors that are mounted on it.
(The sensor itself contains its position and orientation with respect to the platform on which it is
mounted but not which platform). You must create the association between radar sensors and
platforms. A way to do this association is to put the platform and its associated sensors into a cell
array. When you call a particular sensor, pass in the platform-centric target pose and target profile
information. The sensor converts this information to sensor-centric poses. Target poses are outputs of
trackingScenario methods.

Create Radar Sensor
You can create a radar sensor using the monostaticRadarSensor object. Set the radar properties
using name-value pairs and then execute the simulator. For example,

radar1 = monostaticRadarSensor( ...
    'UpdateRate',updaterate, ...           % Hz
    'ReferenceRange', 111.0e3, ...         % m
    'ReferenceRCS', 0.0, ...               % dBsm
    'HasMechanicalScan',true, ...
    'MaxMechanicalScanRate',scanrate, ...  % deg/s
    'HasElectronicScan',false, ...
    'FieldOfView',fov, ...                 % [az;el] deg
    'HasElevation',false, ...
    'HasRangeRate',false, ...
    'AzimuthResolution',1.4, ...           % deg
    'RangeResolution', 135.0)                 % m
dets = radar1(targets,simtime);

Convenience Syntaxes

There are several syntaxes of monostaticRadarSensor that make it easier to specify the properties
of commonly implemented radar scan modes. These syntaxes set combinations of these properties:
ScanMode, FieldOfView, MaxMechanicalScanRate, MechanicalScanLimits, and
ElectronicScanLimits.

• sensor = monostaticRadarSensor('Rotator') creates a monostaticRadarSensor object
that mechanically scans 360° in azimuth. Setting HasElevation to true points the radar
antenna towards the center of the elevation field of view.
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• sensor = monostaticRadarSensor('Sector') creates a monostaticRadarSensor object
that mechanically scans a 90° azimuth sector. Setting HasElevation to true, points the radar
antenna towards the center of the elevation field of view. You can change the ScanMode to
'Electronic' to electronically scan the same azimuth sector. In this case, the antenna is not
mechanically tilted in an electronic sector scan. Instead, beams are stacked electronically to
process the entire elevation spanned by the scan limits in a single dwell.

• sensor = monostaticRadarSensor('Raster') returns a monostaticRadarSensor object
that mechanically scans a raster pattern spanning 90° in azimuth and 10° in elevation upwards
from the horizon. You can change the ScanMode property to 'Electronic' to perform an
electronic raster scan in the same volume.

• sensor = monostaticRadarSensor('No scanning') returns a monostaticRadarSensor
object that stares along the radar antenna boresight direction. No mechanical or electronic
scanning is performed.

You can set other radar properties when you use these syntaxes. For example,

sensor = monostaticRadarSensor('Raster','ScanMode','Electronic')

Radar Sensor Parameters

The properties specific to the monostaticRadarSensor object are listed here. For more detailed
information, type

help monostaticRadarSensor

at the command line.

Sensor location parameters.
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Sensor Location

SensorIndex A unique identifier for each sensor.
UpdateRate Rate at which sensor updates are generated,

specified as a positive scalar. The reciprocal of
this property must be an integer multiple of the
simulation time interval. Updates requested
between sensor update intervals do not return
detections.

MountingLocation Sensor (x,y,z) defining the offset of the sensor
origin from the origin of its platform. The default
value positions the sensor origin at the platform
origin.

Yaw Angle specifying the rotation around the platform
z-axis to align the platform coordinate system
with the sensor coordinate system. Positive yaw
angles correspond to a clockwise rotation when
looking along the positive direction of the z-axis
of the platform coordinate system. Rotations are
applied using the ZYX convention.

Pitch Angle specifying the rotation around the platform
y-axis to align the platform coordinate system
with the sensor coordinate system. Positive pitch
angles correspond to a clockwise rotation when
looking along the positive direction of the y-axis
of the platform coordinate system. Rotations are
applied using the ZYX convention.

Roll Angle specifying the rotation around the platform
x-axis to align the platform coordinate system
with the sensor coordinate system. Positive pitch
angles correspond to a clockwise rotation when
looking along the positive direction of the x-axis
of the platform coordinate system. Rotations are
applied using the ZYX convention.
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DetectionCoordinates Specifies the coordinate system for detections
reported in the “Detections” on page 2-15
output struct. The coordinate system can be
one of:

• 'Scenario' –- detections are reported in the
scenario coordinate frame in rectangular
coordinates. This option can only be selected
when the sensor HasINS property is set to
true.

• 'Body' –- detections are reported in the body
frame of the sensor platform in rectangular
coordinates.

• 'Sensor rectangular' –- detections are
reported in the radar sensor coordinate frame
in rectangular coordinates aligned with the
sensor frame axes.

• 'Sensor spherical' –- detections are
reported in the radar sensor coordinate frame
in spherical coordinates based on the sensor
frame axes.

Sensitivity parameters.

Sensitivity Parameters

DetectionProbability Probability of detecting a target with radar cross
section, ReferenceRCS, at the range of
ReferenceRange.

FalseAlarmRate The probability of a false detection within each
resolution cell of the radar. Resolution cells are
determined from the AzimuthResolution and
RangeResolution properties and when enabled
the ElevationResolution and
RangeRateResolution properties.

ReferenceRange Range at which a target with radar cross section,
ReferenceRCS, is detected with the probability
specified in DetectionProbability.

ReferenceRCS The target radar cross section (RCS) in dB at
which the target is detected at the range
specified by ReferenceRange with a detection
probability specified by
DetectionProbability.

Sensor resolution and bias parameters.

 Simulate Radar Detections
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Resolution Parameters

AzimuthResolution The radar azimuthal resolution defines the
minimum separation in azimuth angle at which
the radar can distinguish two targets.

ElevationResolution The radar elevation resolution defines the
minimum separation in elevation angle at which
the radar can distinguish two targets. This
property only applies when the HasElevation
property is set to true.

RangeResolution The radar range resolution defines the minimum
separation in range at which the radar can
distinguish two targets.

RangeRateResolution The radar range rate resolution defines the
minimum separation in range rate at which the
radar can distinguish two targets. This property
only applies when the HasRangeRate property is
set to true.

AzimuthBiasFraction This property defines the azimuthal bias
component of the radar as a fraction of the radar
azimuthal resolution specified by the
AzimuthResolution property. This property
sets a lower bound on the azimuthal accuracy of
the radar.

ElevationBiasFraction This property defines the elevation bias
component of the radar as a fraction of the radar
elevation resolution specified by the
ElevationResolution property. This property
sets a lower bound on the elevation accuracy of
the radar. This property only applies when the
HasElevation property is set to true.

RangeBiasFraction This property defines the range bias component
of the radar as a fraction of the radar range
resolution specified by the RangeResolution
property. This property sets a lower bound on the
range accuracy of the radar.

RangeRateBiasFraction This property defines the range rate bias
component of the radar as a fraction of the radar
range resolution specified by the
RangeRateResolution property. This property
sets a lower bound on the range rate accuracy of
the radar. This property only applies when you set
the HasRangeRate property to true.

Enabling parameters.
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Enabling Parameters

HasElevation This property allows the radar sensor to scan in
elevation and estimate elevation from target
detections.

HasRangeRate This property allows the radar sensor to estimate
range rate.

HasFalseAlarms This property allows the radar sensor to generate
false alarm detection reports.

HasRangeAmbiguities When true, the radar does not resolve range
ambiguities. When a radar sensor cannot resolve
range ambiguities, targets at ranges beyond the
MaxUnambiguousRange property value are
wrapped into the interval [0
MaxUnambiguousRange]. When false, targets
are reported at their unwrapped range.

HasRangeRateAmbiguites When true, the radar does not resolve range rate
ambiguities. When a radar sensor cannot resolve
range rate ambiguities, targets at range rates
above the MaxUnambiguousRadialSpeed
property value are wrapped into the interval [0
MaxUnambiguousRadialSpeed]. When false,
targets are reported at their unwrapped range
rates. This property only applies when the
HasRangeRate property is set to true.

HasNoise Specifies if noise is added to the sensor
measurements. Set this property to true to
report measurements with noise. Set this
property to false to report measurements
without noise. The reported measurement noise
covariance matrix contained in the output
objectDetection struct is always computed
regardless of the setting of this property.

HasOcclusion Enable occlusion from extended objects, specified
as true or false. Set this property to true to
model occlusion from extended objects. Note that
both extended objects and point targets can be
occluded by extended objects, but a point target
cannot occlude another point target or an
extended object. Set this property to false to
disable occlusion of extended objects.

HasINS Set this property to true to enable an optional
input argument to pass the current estimate of
the sensor platform pose to the sensor. This pose
information is added to the
MeasurementParameters field of the reported
detections. Then, the tracking and fusion
algorithms can estimate the state of the target
detections in scenario coordinates.
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Scan parameters.
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Scan Parameters

  
ScanMode This property specifies the scan mode used by the

radar as one of:

• 'No scanning' –- the radar does not scan.
The radar beam points along the antenna
boresight.

• 'Mechanical'–- the radar mechanically
scans between the azimuth and elevation
limits specified by the
MechanicalScanLimits property.

• 'Electronic'–- the radar electronically
scans between the azimuth and elevation
limits specified by the
ElectronicScanLimits property.

• 'Mechanical and electronic' –- the
radar mechanically scans the antenna
boresight between the mechanical scan limits
and electronically scans beams relative to the
antenna boresight between the electronic
scan limits. The total field of regard scanned
in this mode is the combination of the
mechanical and electronic scan limits.

In all scan modes except 'No scanning', the
scan proceeds at angular intervals specified by
the radar field of view specified in FieldOfView.

MaxMechanicalScanRate This property sets the magnitude of the maximum
mechanical scan rate of the radar. When
HasElevation is true, the scan rate is a vector
consisting of separate azimuthal and elevation
scan rates. When HasElevation is false, the
scan rate is a scalar representing the azimuthal
scan rate. The radar sets its scan rate to step the
radar mechanical angle by the radar field of
regard. When the required scan rate exceeds the
maximum scan rate, the maximum scan rate is
used.

MechanicalScanLimits This property specifies the mechanical scan limits
of the radar with respect to its mounted
orientation. When HasElevation is true, the
limits are specified by minimum and maximum
azimuth and by minimum and maximum
elevation. When HasElevation is false, limits
are specified by minimum and maximum azimuth.
Azimuthal scan limits cannot span more than 360
degrees and elevation scan limits must lie in the
closed interval [-90 90].
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ElectronicScanLimits This property specifies the electronic scan limits
of the radar with respect to the current
mechanical angle. When HasElevation is true,
the limits are specified by minimum and
maximum azimuth and by minimum and
maximum elevation. When HasElevation is
false, limits are specified by minimum and
maximum azimuth. Both azimuthal and elevation
scan limits must lie in the closed interval [-90
90].

FieldOfView This property specifies the sensor azimuthal and
elevation fields of view. The field of view defines
the total angular extent observed by the sensor
during a sensor update. The field of view must lie
in the interval (0,180]. Targets outside of the
sensor angular field of view during a sensor
update are not detected.

Range and range rate parameters.
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Range and Range Rate Parameters

MaxUnambiguousRange This property specifies the range at which the
radar can unambiguously resolve the range of a
target. Targets detected at ranges beyond the
unambiguous range are wrapped into the range
interval [0 MaxUnambiguousRange]. This
property only applies to true target detections
when you set HasRangeAmbiguities property
to true.

This property also defines the maximum range at
which false alarms are generated. This property
only applies to false target detections when you
set HasFalseAlarms property to true.

MaxUnambiguousRadialSpeed This property specifies the maximum magnitude
value of the radial speed at which the radar can
unambiguously resolve the range rate of a target.
Targets detected at range rates whose magnitude
is greater than the maximum unambiguous radial
speed are wrapped into the range rate interval [-
MaxUnambiguousRadialSpeed
MaxUnambiguousRadialSpeed]. This property
only applies to true target detections when you
set both the HasRangeRate and
HasRangeRateAmbiguities properties to
true.

This property also defines the range rate interval
over which false target detections are generated.
This property only applies to false target
detections when you set both the
HasFalseAlarms and HasRangeRate properties
to true.

Detector Input
Each sensor created by monostaticRadarSensor accepts as input an array of target structures.
This structure serves as the interface between the trackingScenario and the sensors. You create
the target struct from target poses and profile information produced by trackingScenario or
equivalent software.

The structure contains these fields.

Field Description
PlatformID Unique identifier for the platform, specified as a

scalar positive integer. This is a required field
with no default value.
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Field Description
ClassID User-defined integer used to classify the type of

target, specified as a nonnegative integer. Zero is
reserved for unclassified platform types and is
the default value.

Position Position of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. This is a
required field with no default value. Units are in
meters.

Velocity Velocity of target in platform coordinates,
specified as a real-valued, 1-by-3 vector. Units are
in meters per second. The default is [0 0 0].

Acceleration Acceleration of target in platform coordinates
specified as a 1-by-3 row vector. Units are in
meters per second-squared. The default is [0 0
0].

Orientation Orientation of the target with respect to platform
coordinates, specified as a scalar quaternion or a
3-by-3 rotation matrix. Orientation defines the
frame rotation from the platform coordinate
system to the current target body coordinate
system. Units are dimensionless. The default is
quaternion(1,0,0,0).

AngularVelocity Angular velocity of target in platform
coordinates, specified as a real-valued, 1-by-3
vector. The magnitude of the vector defines the
angular speed. The direction defines the axis of
clockwise rotation. Units are in degrees per
second. The default is [0 0 0].

You can create a target pose structure by merging information from the platform information output
from the targetProfiles method of trackingScenario and target pose information output from
the targetPoses method on the platform carrying the sensors. You can merge them by extracting
for each PlatformID in the target poses array, the profile information in platform profiles array for
the same PlatformID.

The platform targetPoses method returns this structure for each target other than the platform.
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Target Poses

platformID
ClassID
Position
Velocity
Yaw
Pitch
Roll
AngularVelocity

The platformProfiles method returns this structure for all platforms in the scenario.

Platform Profiles

PlatformID
ClassID
RCSPattern
RCSAzimuthAngles
RCSElevationAngles

Radar Sensor Coordinate Systems
Detections consist of measurements of positions and velocities of targets and their covariance
matrices. Detections are constructed with respect to sensor coordinates but can be output in one of
several coordinates. Multiple coordinate frames are used to represent the positions and orientations
of the various platforms and sensors in a scenario.

In a radar simulation, there is always a top-level global coordinate system which is usually the North-
East-Down (NED) Cartesian coordinate system defined by a tangent plane at any point on the surface
of the Earth. The trackingScenario object models the motion of platforms in the global coordinate
system. When you create a platform, you specify its location and orientation relative to the global
frame. These quantities define the body axes of the platform. Each radar sensor is mounted on the
body of a platform. When you create a sensor, you specify its location and orientation with respect to
the platform body coordinates. These quantities define the sensor axes. The body and radar axes can
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change over time, however, global axes do not change.

Additional coordinate frames can be required. For example, often tracks are not maintained in NED
(or ENU) coordinates, as this coordinate frame changes based on the latitude and longitude where it
is defined. For scenarios that cover large areas (over 100 kilometers in each dimension), earth-
centered earth-fixed (ECEF) can be a more appropriate global frame to use.

A radar sensor generates measurements in spherical coordinates relative to its sensor frame.
However, the locations of the objects in the radar scenario are maintained in a top-level frame. A
radar sensor is mounted on a platform and will, by default, only be aware of its position and
orientation relative to the platform on which it is mounted. In other words, the radar expects all
target objects to be reported relative to the platform body axes. The radar reports the required
transformations (position and orientation) to relate the reported detections to the platform body axes.
These transformations are used by consumers of the radar detections (e.g. trackers) to maintain
tracks in the platform body axes. Maintaining tracks in the platform body axes enables the fusion of
measurement or track information across multiple sensors mounted on the same platform.

If the platform is equipped with an inertial navigation system (INS) sensor, then the location and
orientation of the platform relative to the top-level frame can be determined. This INS information
can be used by the radar to reference all detections to scenario coordinates.
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INS
When you specify HasINS as true, you must pass in an INS struct into the step method. This
structure consists of the position, velocity, and orientation of the platform in scenario coordinates.
These parameters let you express target poses in scenario coordinates by setting the
DetectionCoordinates property.

Detections
Radar sensor detections are returned as a cell array of objectDetection objects. A detection
contains these properties.

objectDetection Structure

Field Definition
Time Measurement time
Measurement Measurements
MeasurementNoise Measurement noise covariance matrix
SensorIndex Unique ID of the sensor
ObjectClassID Object classification
MeasurementParameters Parameters used by initialization functions of any

nonlinear Kalman tracking filters
ObjectAttributes Additional information passed to tracker

Measurement and MeasurementNoise are reported in the coordinate system specified by the
DetectionCoordinates property of the monostaticRadarSensor are reported in sensor
Cartesian coordinates.

Measurement Coordinates

DetectionCoordinates Measurement and Measurement Noise
Coordinates

'Scenario' Coordinate Dependence on HasRangeRate
HasRangeRate Coordinates
true [x;y;z;vx;vy;vz]
false [x;y;z]

'Body'
'Sensor rectangular'

'Sensor spherical' Coordinate Dependence on HasRangeRate
and HasElevation

HasRangeRat
e

HasElevatio
n

Coordinates

true true [az;el;rng;
rr]

true false [az;rng;rr]
false true [az;el;rng]
false false [az;rng]
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The MeasurementParameters field consists of an array of structs describing a sequence of
coordinate transformations from a child frame to a parent frame or the inverse transformations (see
“Frame Rotation”). The longest possible sequence of transformations is: Sensor → Platform →
Scenario. For example, if the detections are reported in sensor spherical coordinates and HasINS is
set to false, then the sequence consists of one transformation from sensor to platform. If HasINS is
true, the sequence of transformations consists of two transformations – first to platform coordinates
then to scenario coordinates. Trivially, if the detections are reported in platform rectangular
coordinates and HasINS is set to false, the transformation consists only of the identity.

Each struct takes the form:

MeasurementParameters

Parameter Definition
Frame Enumerated type indicating the frame used to

report measurements. When detections are
reported using a rectangular coordinate system,
Frame is set to 'rectangular'. When
detections are reported in spherical coordinates,
Frame is set 'spherical' for the first struct.

OriginPosition Position offset of the origin of frame(k) from the
origin of frame(k+1) represented as a 3-by-1
vector.

OriginVelocity Velocity offset of the origin of frame(k) from the
origin of frame(k+1) represented as a 3-by-1
vector.

Orientation A 3-by-3 real-valued orthonormal frame rotation
matrix which rotates the axes of frame(k+1) into
alignment with the axes of frame(k).

IsParentToChild A logical scalar indicating if Orientation
performs a frame rotation from the parent
coordinate frame to the child coordinate frame. If
false, Orientation performs a frame rotation
from the child's coordinate frame to the parent's
coordinate frame.

HasElevation A logical scalar indicating if the frame has three-
dimensional position. Only set to false for the first
struct when detections are reported in
spherical coordinates and HasElevation is
false, otherwise it is true.

HasVelocity A logical scalar indicating if the reported
detections include velocity measurements. true
when HasRangeRate is enabled, otherwise
false.
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ObjectAttributes

Attribute Definition
TargetIndex Identifier of the platform, PlatformID, that

generated the detection. For false alarms, this
value is negative.

SNR Detection signal-to-noise ratio in dB.
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Multi-Object Tracking

• “Tracking and Tracking Filters” on page 3-2
• “Introduction to Estimation Filters” on page 3-9
• “Linear Kalman Filters” on page 3-20
• “Extended Kalman Filters” on page 3-25
• “Introduction to Multiple Target Tracking” on page 3-28
• “Introduction to Assignment Methods in Tracking Systems” on page 3-33
• “Introduction to Track-To-Track Fusion” on page 3-45
• “Multiple Extended Object Tracking” on page 3-48
• “Configure Time Scope MATLAB Object” on page 3-50

Tracking is the process of estimating the state of motion of an object based on measurements taken
off the object. For an object moving in space, the state usually consists of position, velocity, and any
other state parameters of objects at any given time. A state is the necessary information needed to
predict future states of the system given the specified equations of motion. The estimates are derived
from observations on the objects and are updated as new observations are taken. Observations are
made using one or more sensors. Observations can only be used to update a track if it is likely that
the observation is that of the object having that track. Observations need to be either associated with
an existing track or used to create a new track. When several tracks are present, there are several
ways observations are associated with one and only one track. The chosen track is based on the
"closest" track to the observation.
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Tracking and Tracking Filters

Multi-Object Tracking
You can use multi-sensor, multi-target trackers, trackerGNN, trackerJPDA, and trackerTOMHT, to
track multiple targets. These trackers implement the multi-object tracking problem using the
measurement-to-track association approach. Tracks are initiated and updated using sensor detections
of targets. Trackers take several steps when new detections are made:

• The tracker tries to assign a detection to an existing track.
• The tracker creates a track for each detection it cannot assign. When starting the tracker, all

detections are used to create tracks.
• The tracker evaluates the status of each track. For new tracks, the status is tentative until enough

detections are made to confirm the track. For existing tracks, newly assigned detections are used
by the tracking filter to update the track state. When a track has no new added detections, the
track is coasted (predicted) until new detections are assigned to it. If no new detections are added
after a specified number of updates, the track is deleted.

When tracking multiple objects using these trackers, there are several things to consider:

• Decide which tracker to use.

• trackerGNN uses a global nearest-neighbor assignment algorithm, which maintains a single
hypothesis about the tracked object. The tracker offers low computation cost but is not robust
during ambiguous association events.

• trackerTOMHT assigns detections based on a track-oriented, multi-hypothesis approach,
which maintains multiple hypotheses about the tracked object. The tracker is robust during
ambiguous data association events but is computationally more expensive.

• trackerJPDA uses a joint probabilistic data association approach, which applies a soft
assignment where multiple detections can contribute to each track. The tracker balances the
robustness and computation cost between trackerGNN and trackerTOMHT.

See the “Tracking Closely Spaced Targets Under Ambiguity” example for a comparison between
these three trackers.

• Decide which type of tracking filter to use.

The choice of tracking filter depends on the expected dynamics of the object you want to track.
The toolbox provides multiple Kalman filters including the Linear Kalman filter, trackingKF, the
Extended Kalman filter, trackingEKF, the Unscented Kalman filter, trackingUKF, and the
Cubature Kalman filter, trackingCKF. The linear Kalman filter is used when the dynamics of the
object follow a linear model and the measurements are linear functions of the state vector. The
extended, unscented, and cubature Kalman filters are used when the dynamics are nonlinear, the
measurement model is nonlinear, or both. The toolbox also provides non-Gaussian filters such as
the particle filter, trackingPF, Gaussian-sum filter, trackingGSF, and the Interacting Multiple
Model (IMM) filter, trackingIMM. See the “Tracking with Range-Only Measurements” and
“Tracking Maneuvering Targets” examples for more information about these filters.

You can set the type of filter by specifying the FilterInitializationFcn property of a tracker.
For example, if you set the FilterInitializationFcn property to @initcaekf, then the
tracker uses the initcaekf function to create a constant-acceleration extended Kalman filter for
a new track generated from detections.
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• Decide which track logic to use.

You can specify the conditions under which a track is confirmed or deleted by setting the
TrackLogic property. Three algorithms are supported:

• 'History' — Track confirmation and deletion are based on the number of times the track has
been assigned to a detection in the last several tracker updates. You can use this logic with
trackerGNN and trackerJPDA.

• 'Score' — Track confirmation and deletion are based on a log-likelihood computation. A high
score means that the track is more likely to be valid. A low score means that the track is more
likely to be false. You can use this logic with trackerGNN and trackerTOMHT.

• 'Integrated' — Track confirmation and deletion are based on the probability of track
existence. You can use this logic with trackerJPDA.

For more details, see the “Introduction to Track Logic” example.

You can also use a multi-sensor, multi-target tracker, trackerPHD, to track multiple targets
simultaneously. trackerPHD approaches the multi-object tracking problem using the random finite
set (RFS) method and tracks the probability hypothesis density (PHD) of a scenario. trackerPHD
extracts peaks from the PHD-intensity to represent potential targets and maintain identities of
targets by assigning a label to each component. The toolbox offers one realization of PHD, ggiwphd,
which represents the PHD of extended targets using a Gamma Gaussian Inverse-Wishart (GGIW)
target-state model. You can represent the configurations of sensors for trackerPHD using
trackingSensorConfiguration.

Multi-Object Tracker Properties
trackerGNN Properties

The trackerGNN object is a multi-sensor, multi-object tracker that uses global nearest neighbor
association. Each detection can be assigned to only one track (single-hypothesis tracker) which can
also be a new track that the detection initiates. At each step of the simulation, the tracker updates
the track state. You can specify the behavior of the tracker by setting the following properties.
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trackerGNN Properties

FilterInitializationFcn A handle to a function that initializes a tracking
filter based on a single detection. This function is
called when a detection cannot be assigned to an
existing track. For example, initcaekf creates
an extended Kalman filter for an accelerating
target. All tracks are initialized with the same
type of filter.

Assignment The name of the assignment algorithm. The
tracker provides three built-in algorithms:
'Munkres', 'Jonker-Volgenant', and
'Auction' algorithms. You can also create your
own custom assignment algorithm by specifying
'Custom'.

CustomAssignmentFcn The name of the custom assignment algorithm
function. This property is available on when the
Assignment property is set to 'Custom'.

AssignmentThreshold Specify the threshold that controls the
assignment of a detection to a track. Detections
can only be assigned to a track if their normalized
distance from the track is less than the
assignment threshold. Each tracking filter has a
different method of computing the normalized
distance. Increase the threshold if there are
detections that can be assigned to tracks but are
not. Decrease the threshold if there are
detections that are erroneously assigned to
tracks.

TrackLogic Specify the track confirmation logic –-'History'
or 'Score'. For descriptions of these options,
type

help trackHistoryLogic

or

help trackScoreLogic

at the command line.
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ConfirmationThreshold Specify the threshold for track confirmation. The
threshold depends on the setting for
TrackLogic

• 'History' –- specify the confirmation
threshold as [M N]. If the track is detected at
least M times in the last N updates, the track is
confirmed.

• 'Score' –-- specify the confirmation
threshold as a single number. If the score is
greater than or equal to the threshold, this
track is confirmed.

.
DeletionThreshold Specify the threshold for track deletion. The

threshold depends on the setting of TrackLogic

• 'History' –- specify the deletion threshold
as a pair of integers [P R]. A track is deleted
if it is not assigned to a track at least P times
in the last R updates.

• 'Score' –-- specify the deletion threshold as
a single number. The track is deleted if its
score decreases by at least this threshold from
its maximum track score.

.
DetectionProbability Specify the probability of detection as a number

in the range (0,1). The probability of detection is
used to calculate the track score when initializing
and updating a track. This property is used only
when TrackLogic is set to 'Score'.

FalseAlarmRate Specify the rate of false detection as a number in
the range (0,1). The false alarm rate is used to
calculate the track score when initializing and
updating a track. This property is used only when
TrackLogic is set to 'Score'.

Beta Specify the rate of new tracks per unit volume as
a positive number. This property is used only
when TrackLogic is set to 'Score'. The rate of
new tracks is used in calculating the track score
during track initialization. This property is used
only when TrackLogic is set to 'Score'.
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Volume Specify the volume of the sensor measurement
bin as a positive scalar. For example, a radar
sensor that produces a 4-D measurement of
azimuth, elevation, range, and range-rate creates
a 4-D volume. The volume is a product of the
radar angular beamwidth, the range bin width,
and the range-rate bin width. The volume is used
in calculating the track score when initializing
and updating a track. This property is used only
when TrackLogic is set to 'Score'.

MaxNumTracks Specify the maximum number of tracks the
tracker can maintain.

MaxNumSensors Specify the maximum number of sensors sending
detections to the tracker as a positive integer.
This number must be greater than or equal to the
largest SensorIndex value used in the
objectDetection input to the step method.
This property determines how many sets of
ObjectAttributes each track can have.

HasDetectableTrackIDsInput Set this property to true if you want to provide a
list of detectable track IDs as input to the step
method. This list contains all tracks that the
sensors expect to detect and, optionally, the
probability of detection for each track ID.

HasCostMatrixInput Set this property to true if you want to provide
an assignment cost matrix as input to the step
method.

trackerGNN Input

The input to the trackerGNN consists of a list of detections, the update time, cost matrix, and other
data. Detections are specified as a cell array of objectDetection objects (see “Detections” on page
2-15). The input arguments are listed here.
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trackerGNN Input

tracker A trackerGNN object.
detections Cell array of objectDetection objects (see

“Detections” on page 2-15).
time Time to which all the tracks are to be updated

and predicted. The time at this execution step
must be greater than the value in the previous
call.

costmatrix Cost matrix for assigning detections to tracks. A
real T-by-D matrix, where T is the number of
tracks listed in the allTracks argument
returned from the previous call to step. D is the
number of detections that are input in the current
call. A larger cost matrix entry means a lower
likelihood of assignment.

detectableTrackIDs IDs of tracks that the sensors expect to detect,
specified as an M-by-1 or M-by-2 matrix. The first
column consists of track IDs, as reported in the
TrackID field of the tracker output. The second
column is optional and allows you to add the
detection probability for each track.

trackerGNN Output

The output of the tracker can consist of up to three struct arrays with track state information. You
can retrieve just the confirmed tracks, the confirmed and tentative tracks, or these tracks plus a
combined list of all tracks.

confirmedTracks = step(...)

[confirmedTracks, tentativeTracks] = step(...)

[confirmedTracks, tentativeTracks, allTracks] = step(...)

The fields contained in the struct are:
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trackerGNN Output struct

TrackID Unique integer that identifies the track.
UpdateTime Time to which the track is updated.
Age Number of updates since track initialization.
State State vector at update time.
StateCovariance State covariance matrix at update time.
IsConfirmed True if the track is confirmed.
TrackLogic The track logic used in confirming the track –

'History' or 'Score'.
TrackLogicState The current state of the track logic.

• For 'History' track logic, a 1-by-Q logical
array, where Q is the larger of N specified in
the confirmation threshold property,
ConfirmationThreshold, and R specified in
the deletion threshold property,
DeletionThreshold.

• For 'Score' track logic, a 1-by-2 numerical
array in the form: [currentScore,
maxScore].

IsCoasted True if the track has been updated without a
detection. In this case, tracks are predicted to the
current time.

ObjectClassID An integer value representing the target
classification. Zero is reserved for an "unknown"
class.

ObjectAttributes A cell array of cells. Each cell captures the object
attributes reported by the corresponding sensor.
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Introduction to Estimation Filters

Background
Estimation Systems

For many autonomous systems, the knowledge of the system state is a prerequisite for designing any
applications. In reality, however, the state is often not directly obtainable. The system state is usually
inferred or estimated based on the system outputs measured by certain instruments (such as sensors)
and the flow of the state governed by a dynamic or motion model. Some simple techniques, such as
least square estimation or batch estimation, are sufficient in solving static or offline estimation
problems. For online and real time (sequential) estimation problems, more sophisticated estimation
filters are usually applied.

An estimation system is composed of a dynamic or motion model that describes the flow of the state
and a measurement model that describes how the measurements are obtained. Mathematically, these
two models can be represented by an equation of motion and a measurement equation. For example,
the equation of motion and measurement equation for a general nonlinear discrete estimation system
can be written as:

xk + 1 = f (xk)
yk = h(xk)

where k is the time step, xk is the system state at time step k, f(xk) is the state-dependent equation of
motion, h(xk) is the state dependent measurement equation, and yk is the output.

Noise Distribution

In most cases, building a perfect model to capture all the dynamic phenomenon is not possible. For
example, including all frictions in the motion model of an autonomous vehicle is impossible. To
compensate for these unmodelled dynamics, process noise (w) is often added to the dynamic model.
Moreover, when measurements are taken, multiple sources of errors, such as calibration errors, are
inevitably included in the measurements. To account for these errors, proper measurement noise
must be added to the measurement model. An estimation system including these random noises and
errors is called a stochastic estimation system, which can be represented by:
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xk + 1 = f (xk, wk)
yk = h(xk, vk)

where wk and vk represent process noise and measurement noise, respectively.

For most engineering applications, the process noise and measurement noise are assumed to follow
zero-mean Gaussian or normal distributions, or are at least be approximated by Gaussian
distributions. Also, because the exact state is unknown, the state estimate is a random variable,
usually assumed to follow Gaussian distributions. Assuming Gaussian distributions for these variables
greatly simplifies the design of an estimation filter, and form the basis of the Kalman filter family.

A Gaussian distribution for a random variable (x) is parametrized by a mean value μ and a covariance
matrix P, which is written as x∼N(μ,P). Given a Gaussian distribution, the mean, which is also the
most likely value of x, is defined by expectation (E) as:

μ = E[x]
The mean is also called the first moment of x about the origin. The covariance that describes of the
uncertainty of x is defined by expectation (E) as:

P = E x− μ x− μ T

The covariance is also called the second moment of x about its mean.

If the dimension of x is one, P is only a scalar. In this case, the value of P is usually denoted by σ2 and
called variance. The square root, σ, is called the standard deviation of x. The standard deviation has
important physical meaning. For example, the following figure shows the probability density function
(which describes the likelihood that x takes a certain value) for a one-dimensional Gaussian
distribution with mean equal to μ and standard deviation equal to σ. About 68% of the data fall within
the 1σ boundary of x, 95% of the data fall within the 2σ boundary, and 99.7% of the data fall within
the 3σ boundary.
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Even though the Gaussian distribution assumption is the dominant assumption in engineering
applications, there exist systems whose state cannot be approximated by Gaussian distributions. In
this case, non-Kalman filters (such as a particle filter) is required to accurately estimate the system
state.

Filter Design
The goal of designing a filter is to estimate the state of a system using measurements and system
dynamics. Since the measurements are usually taken at discrete time steps, the filtering process is
usually separated into two steps:

1 Prediction: Propagate state and covariance between discrete measurement time steps (k = 1, 2,
3, …, N) using dynamic models. This step is also called flow update.

2 Correction: Correct the state estimate and covariance at discrete time steps using
measurements. This step is also called measurement update.

For representing state estimate and covariance status in different steps, xk|k and Pk|k denote the state
estimate and covariance after correction at time step k, whereas xk+1|k and Pk+1|k denote the state
estimate and covariance predicted from the previous time step k to the current time step k+1.

Prediction

In the prediction step, the state propagation is straightforward. The filter only needs to substitute the
state estimate into the dynamic model and propagate it forward in time as xk+1|k = f(xk|k).

The covariance propagation is more complicated. If the estimation system is linear, then the
covariance can be propagated (Pk|k→Pk+1|k) exactly in a standard equation based on the system
properties. For nonlinear systems, accurate covariance propagation is challenging. A major difference
between different filters is how they propagate the system covariance. For example:
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• A linear Kalman filter uses a linear equation to exactly propagate the covariance.
• An extended Kalman filter propagates the covariance based on linear approximation, which

renders large errors when the system is highly nonlinear.
• An unscented Kalman filter uses unscented transformation to sample the covariance distribution

and propagate it in time.

How the state and covariance are propagated also greatly affects the computation complexity of a
filter. For example:

• A linear Kalman filter uses a linear equation to exactly propagate the covariance, which is usually
computationally efficient.

• An extended Kalman filter uses linear approximations, which require calculation of Jacobian
matrices and demand more computation resources.

• An unscented Kalman filter needs to sample the covariance distribution and therefore requires the
propagation of multiple sample points, which is costly for high-dimensional systems.

Correction

In the correction step, the filter uses measurements to correct the state estimate through
measurement feedback. Basically, the difference between the true measurement and the predicted
measurement is added to the state estimate after it is multiplied by a feedback gain matrix. For
example, in an extended Kalman filter, the correction for the state estimate is given by:

xk + 1 k + 1 = xk + 1 k + Kk(yk + 1− h(xk + 1 k))
As mentioned, xk+1|k is the state estimate before (priori) correction and xk+1|k+1 is the state estimate
after (posteriori) correction. Kk is the Kalman gain governed by an optimal criterion, yk is the true
measurement, and h(xk+1|k) is the predicted measurement.

In the correction step, the filter also corrects the estimate error covariance. The basic idea is to
correct the probabilistic distribution of x using the distribution information of yk+1. This is called the
posterior probability density of x given y. In a filter, the prediction and correction steps are processed
recursively. The flowchart shows the general algorithms for Kalman filters.
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Estimation Filters in Sensor Fusion and Tracking Toolbox
Sensor Fusion and Tracking Toolbox offers multiple estimation filters you can use to estimate and
track the state of a dynamic system.

Kalman Filter

The classical Kalman filter (trackingKF) is the optimal filter for linear systems with Gaussian
process and measurement noise. A linear estimation system can be given as:

xk + 1 = Akxk + wk
yk = Hkxk + vk

Both the process and measurement noise are assumed to be Gaussian, that is:

wk N(0, Qk)
vk N(0, Rk)

Therefore, the covariance matrix can be directly propagated between measurement steps using a
linear algebraic equation as:

Pk + 1 k = AkPk kAk
T + Qk

The correction equations for the measurement update are:

xk + 1 k + 1 = xk + 1 k + Kk(yk− Hkxk + 1 k)
Pk + 1 k + 1 = (I − KkHk)Pk + 1 k
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To calculate the Kalman gain matrix (Kk) in each update, the filter needs to calculate the inverse of a
matrix:

Kk = Pk k− 1Hk
T HkPk k− 1Hk

T + Rk
−1

Since the dimension of the inverted matrix is equal to that of the estimated state, this calculation
requires some computation efforts for a high dimensional system. For more details, see “Linear
Kalman Filters” on page 3-20.

Alpha-Beta Filter

The alpha-beta filter (trackingABF) is a suboptimal filter applied to linear systems. The filter can be
regarded as a simplified Kalman filter. In a Kalman filter, the Kalman gain and covariance matrices
are calculated dynamically and updated in each step. However, in an alpha-beta filter, these matrices
are constant. This treatment sacrifices the optimality of a Kalman filter but improves the computation
efficiency. For this reason, an alpha-beta filter might be preferred when the computation resources
are limited.

Extended Kalman Filter

The most popular extended Kalman filter (trackingEKF) is modified from the classical Kalman filter
to adapt to the nonlinear models. It works by linearizing the nonlinear system about the state
estimate and neglecting the second and higher order nonlinear terms. Its formulations are basically
the same as those of a linear Kalman filter except that the Ak and Hk matrices in the Kalman filter are
replaced by the Jacobian matrices of f(xk ) and h(xk):

Ak =
∂ f (xk)
∂xk xk k− 1

Hk =
∂h(xk)
∂xk xk k− 1

If the true dynamics of the estimation system are close to the linearized dynamics, then using this
linear approximation does not yield significant errors for a short period of time. For this reason, an
EKF can produce relatively accurate state estimates for a mildly nonlinear estimation system with
short update intervals. However, since an EKF neglects higher order terms, it can diverge for highly
nonlinear systems (quadrotors, for example), especially with large update intervals.
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Compared to a KF, an EKF needs to derive the Jacobian matrices, which requires the system
dynamics to be differentiable, and to calculate the Jacobian matrices to linearize the system, which
demands more computation assets.

Note that for estimation systems with state expressed in spherical coordinates, you can use
trackingMSCEKF.

Unscented Kalman Filter

The unscented Kalman filter (trackingUKF) uses an unscented transformation (UT) to approximately
propagate the covariance distribution for a nonlinear model. The UT approach samples the
covariance Gaussian distribution at the current time, propagates the sample points (called sigma
points) using the nonlinear model, and approximates the resulting covariance distribution assumed to
be Gaussian by evaluating these propagated sigma points. The figure illustrates the difference
between the actual propagation, the linearized propagation, and the UT propagation of the
uncertainty covariance.

Compared to the linearization approach taken by an EKF, the UT approach results in more accurate
propagation of covariance and leads to more accurate state estimation, especially for highly nonlinear
systems. UKF does not require the derivation and calculation of Jacobian matrices. However, UKF
requires the propagation of 2n+1 sigma points through the nonlinear model, where n is the
dimension of the estimated state. This can be computationally expensive for high dimensional
systems.

Cubature Kalman Filter

The cubature Kalman filter (trackingCKF) takes a slightly different approach than UKF to generate
2n sample points used to propagate the covariance distribution, where n is the dimension of the
estimated state. This alternate sample point set often results in better statistical stability and avoids
divergence which might occur in UKF, especially when running in a single-precision platform. Note
that a CKF is essentially equivalent to a UKF when the UKF parameters are set to α = 1, β = 0, and κ
= 0. See trackingUKF for the definition of these parameters.
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Gaussian-Sum Filter

The Gaussian-Sum filter (trackingGSF) uses the weighted sum of multiple Gaussian distributions to
approximate the distribution of the estimated state. The estimated state is given by a weighted sum of
Gaussian states:

xk = ∑
i = 1

N
ck

i xk
i

where N is the number of Gaussian states maintained in the filter, and ck
i is the weight for the

corresponding Gaussian state, which is modified in each update based on the measurements. The
multiple Gaussian states follow the same dynamic model as:

xk + 1
i = f (xk

i , wk
i ), for i = 1, 2, …, N .

The filter is effective in estimating the states of an incompletely observable estimation system. For
example, the filter can use multiple angle-parametrized extended Kalman filters to estimate the
system state when only range measurements are available. See “Tracking with Range-Only
Measurements” for an example.

Interactive Multiple Model Filter

The interactive multiple model filter (trackingIMM) uses multiple Gaussian filters to track the
position of a target. In highly maneuverable systems, the system dynamics can switch between
multiple models (constant velocity, constant acceleration, and constant turn for example). Modelling
the motion of a target using only one motion model is difficult. A multiple model estimation system
can be described as:
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xk + 1
i = f i(xk

i , wk
i )

yk
i = hi(xk

i , vk
i )

where i = 1, 2, …, M, and M is the total number of dynamic models. The IMM filter resolves the
target motion uncertainty by using multiple models for a maneuvering target. The filter processes all
the models simultaneously and represents the overall estimate as the weighted sum of the estimates
from these models, where the weights are the probability of each model. See “Tracking Maneuvering
Targets” for an example.

Particle Filter

The particle filter (trackingPF) is different from the Kalman family of filters (EKF and UKF, for
example) as it does not rely on the Gaussian distribution assumption, which corresponds to a
parametric description of uncertainties using mean and variance. Instead, the particle filter creates
multiple simulations of weighted samples (particles) of a system's operation through time, and then
analyzes these particles as a proxy for the unknown true distribution. A brief introduction of the
particle filter algorithm is shown in the figure.

The motivation behind this approach is a law-of-large-numbers argument — as the number of
particles gets large, their empirical distribution gets close to the true distribution. The main
advantage of a particle filter over various Kalman filters is that it can be applied to non-Gaussian
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distributions. Also, the filter has no restriction on the system dynamics and can be used with highly
nonlinear system. Another benefit is the filter’s inherent ability to represent multiple hypotheses
about the current state. Since each particle represents a hypothesis of the state with a certain
associated likelihood, a particle filter is useful in cases where there exists ambiguity about the state.

Along with these appealing properties is the high computation complexity of a particle filter. For
example, a UKF requires propagating 13 sample points to estimate the 3-D position and velocity of an
object. However, a particle filter may require thousands of particles to obtain a reasonable estimate.
Also, the number of particles needed to achieve good estimation grows very quickly with the state
dimension and can lead to particle deprivation problems in high dimensional spaces. Therefore,
particle filters have been mostly applied to systems with a reasonably low number of dimensions (for
example robots).

How to Choose a Tracking Filter
The following table lists all the tracking filters available in Sensor Fusion and Tracking Toolbox and
how to choose them given constraints on system nonlinearity, state distribution, and computational
complexity.

Filter Name Supports
Nonlinear
Models

Gaussian State Computational
Complexity

Comments

Alpha-Beta Low Suboptimal filter.
Kalman ✓ Medium Low Optimal for linear

systems.
Extended Kalman ✓ ✓ Medium Uses linearized

models to
propagate
uncertainty
covariance.

Unscented Kalman ✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points. May
become
numerically
unstable in a
single-precision
platform.

Cubature Kalman ✓ ✓ Medium High Samples the
uncertainty
covariance to
propagate the
sample points.
Numerically
stable.
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Gaussian-Sum ✓ ✓

(Assumes a
weighted sum of
distributions)

High Good for partially
observable cases
(angle-only
tracking for
example).

Interacting
Multiple Models
(IMM)

✓

Multiple models

✓

(Assumes a
weighted sum of
distributions)

High Maneuvering
objects (which
accelerate or turn,
for example)

Particle ✓  Very High Samples the
uncertainty
distribution using
weighted particles.
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Linear Kalman Filters
In this section...
“State Equations” on page 3-20
“Measurement Models” on page 3-21
“Linear Kalman Filter Equations” on page 3-22
“Filter Loop” on page 3-22
“Constant Velocity Model” on page 3-23
“Constant Acceleration Model” on page 3-24

When you use a Kalman filter to track objects, you use a sequence of detections or measurements to
construct a model of the object motion. Object motion is defined by the evolution of the state of the
object. The Kalman filter is an optimal, recursive algorithm for estimating the track of an object. The
filter is recursive because it updates the current state using the previous state, using measurements
that may have been made in the interval. A Kalman filter incorporates these new measurements to
keep the state estimate as accurate as possible. The filter is optimal because it minimizes the mean-
square error of the state. You can use the filter to predict future states or estimate the current state
or past state.

State Equations
For most types of objects tracked in Sensor Fusion and Tracking Toolbox, the state vector consists of
one-, two- or three-dimensional positions and velocities.

Start with Newton equations for an object moving in the x-direction at constant acceleration and
convert these equations to space-state form.

mẍ = f

ẍ = f
m = a

If you define the state as

x1 = x
x2 = ẋ,

you can write Newton’s law in state-space form.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a

You use a linear dynamic model when you have confidence that the object follows this type of motion.
Sometimes the model includes process noise to reflect uncertainty in the motion model. In this case,
Newton’s equations have an additional term.

d
dt

x1
x2

=
0 1
0 0

x1
x2

+
0
1

a +
0
1

vk

vk is the unknown noise perturbations of the acceleration. Only the statistics of the noise are known.
It is assumed to be zero-mean Gaussian white noise.
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You can extend this type of equation to more than one dimension. In two dimensions, the equation has
the form

d
dt

x1
x2
y1
y2

=

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

x1
x2
y1
y2

+

0
ax
0
ay

+

0
vx
0
vy

The 4-by-4 matrix on the right side is the state transition model matrix. For independent x- and y-
motions, this matrix is block diagonal.

When you transition to discrete time, you integrate the equations of motion over the length of the
time interval. In discrete form, for a sample interval of T, the state-representation becomes

x1, k + 1
x2, k + 1

=
1 T
0 1

x1, k
x2, k

+
0
T

a +
0
1

v

The quantity xk+1 is the state at discrete time k+1, and xk is the state at the earlier discrete time, k. If
you include noise, the equation becomes more complicated, because the integration of noise is not
straightforward.

The state equation can be generalized to

xk + 1 = Fkxk + Gkuk + vk

Fk is the state transition matrix and Gk is the control matrix. The control matrix takes into account
any known forces acting on the object. Both of these matrices are given. The last term represents
noise-like random perturbations of the dynamic model. The noise is assumed to be zero-mean
Gaussian white noise.

Continuous-time systems with input noise are described by linear stochastic differential equations.
Discrete-time systems with input noise are described by linear stochastic differential equations. A
state-space representation is a mathematical model of a physical system where the inputs, outputs,
and state variables are related by first-order coupled equations.

Measurement Models
Measurements are what you observe about your system. Measurements depend on the state vector
but are not always the same as the state vector. For instance, in a radar system, the measurements
can be spherical coordinates such as range, azimuth, and elevation, while the state vector is the
Cartesian position and velocity. For the linear Kalman filter, the measurements are always linear
functions of the state vector, ruling out spherical coordinates. To use spherical coordinates, use the
extended Kalman filter.

The measurement model assumes that the actual measurement at any time is related to the current
state by

zk = Hkxk + wk

wk represents measurement noise at the current time step. The measurement noise is also zero-mean
white Gaussian noise with covariance matrix Q described by Qk = E[nknk

T].
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Linear Kalman Filter Equations
Without noise, the dynamic equations are

xk + 1 = Fkxk + Gkuk .

Likewise, the measurement model has no measurement noise contribution. At each instance, the
process and measurement noises are not known. Only the noise statistics are known. The

zk = Hkxk

You can put these equations into a recursive loop to estimate how the state evolves and also how the
uncertainties in the state components evolve.

Filter Loop
Start with a best estimate of the state, x0/0, and the state covariance, P0/0. The filter performs these
steps in a continual loop.

1 Propagate the state to the next step using the motion equations.

xk + 1 k = Fkxk k + Gkuk .

Propagate the covariance matrix as well.

Pk + 1 k = FkPk kFk
T + Qk .

The subscript notation k+1|k indicates that the quantity is the optimum estimate at the k+1 step
propagated from step k. This estimate is often called the a priori estimate.

Then predict the measurement at the updated time.

zk + 1 k = Hk + 1xk + 1 k
2 Use the difference between the actual measurement and predicted measurement to correct the

state at the updated time. The correction requires computing the Kalman gain. To do this, first
compute the measurement prediction covariance (innovation)

Sk + 1 = Hk + 1Pk + 1 kHk + 1
T + Rk + 1

Then the Kalman gain is

Kk + 1 = Pk + 1 kHk + 1
T Sk + 1

−1

and is derived from using an optimality condition.
3 Correct the predicted estimate with the measurement. Assume that the estimate is a linear

combination of the predicted state and the measurement. The estimate after correction uses the
subscript notation, k+1|k+1. is computed from

xk + 1 k + 1 = xk + 1 k + Kk + 1(zk + 1− zk + 1 k)

where Kk+1 is the Kalman gain. The corrected state is often called the a posteriori estimate of the
state because it is derived after the measurement is included.

Correct the state covariance matrix
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Pk + 1 k + 1 = Pk + 1 k− Kk + 1Sk + 1K′k + 1

Finally, you can compute a measurement based upon the corrected state. This is not a correction
to the measurement but is a best estimate of what the measurement would be based upon the
best estimate of the state. Comparing this to the actual measurement gives you an indication of
the performance of the filter.

This figure summarizes the Kalman loop operations.

Constant Velocity Model
The linear Kalman filter contains a built-in linear constant-velocity motion model. Alternatively, you
can specify the transition matrix for linear motion. The state update at the next time step is a linear
function of the state at the present time. In this filter, the measurements are also linear functions of
the state described by a measurement matrix. For an object moving in 3-D space, the state is
described by position and velocity in the x-, y-, and z-coordinates. The state transition model for the
constant-velocity motion is

xk + 1
vx, k + 1
yk + 1

vy, k + 1
zk + 1

vz, k + 1

=

1 T 0 0 0 0
0 1 0 0 0 0
0 0 1 T 0 0
0 0 0 1 0 0
0 0 0 0 1 T
0 0 0 0 0 1

xk
vx, k
yk

vy, k
zk

vz, k
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The measurement model is a linear function of the state vector. The simplest case is one where the
measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

xk
vx, k
yk

vy, k
zk

vz, k

Constant Acceleration Model
The linear Kalman filter contains a built-in linear constant-acceleration motion model. Alternatively,
you can specify the transition matrix for constant-acceleration linear motion. The transition model for
linear acceleration is

xk + 1
vx, k + 1
ax, k + 1
yk + 1

vy, k + 1
ay, k + 1
zk + 1

vz, k + 1
az, k + 1

=

1 T 1
2T2 0 0 0 0 0 0

0 1 T 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

0 0 0 1 T 1
2T2 0 0 0

0 0 0 0 1 T 0 0 0
0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 T 1
2T2

0 0 0 0 0 0 0 1 T
0 0 0 0 0 0 0 0 1

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
az, k

The simplest case is one where the measurements are the position components of the state.

mx, k
my, k
mz, k

=
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

xk
vx, k
ax, k
yk

vy, k
ay, k
zk

vz, k
ay, k

See Also
Objects
trackingKF
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Extended Kalman Filters
In this section...
“State Update Model” on page 3-25
“Measurement Model” on page 3-25
“Extended Kalman Filter Loop” on page 3-26
“Predefined Extended Kalman Filter Functions” on page 3-27

Use an extended Kalman filter when object motion follows a nonlinear state equation or when the
measurements are nonlinear functions of the state. A simple example is when the state or
measurements of the object are calculated in spherical coordinates, such as azimuth, elevation, and
range.

State Update Model
The extended Kalman filter formulation linearizes the state equations. The updated state and
covariance matrix remain linear functions of the previous state and covariance matrix. However, the
state transition matrix in the linear Kalman filter is replaced by the Jacobian of the state equations.
The Jacobian matrix is not constant but can depend on the state itself and time. To use the extended
Kalman filter, you must specify both a state transition function and the Jacobian of the state transition
function.

Assume there is a closed-form expression for the predicted state as a function of the previous state,
controls, noise, and time.

xk + 1 = f (xk, uk, wk, t)

The Jacobian of the predicted state with respect to the previous state is

F(x) = ∂ f
∂x .

The Jacobian of the predicted state with respect to the noise is

F(w) = ∂ f
∂wi

.

These functions take simpler forms when the noise enters linearly into the state update equation:

xk + 1 = f (xk, uk, t) + wk

In this case, F(w) = 1M.

Measurement Model
In the extended Kalman filter, the measurement can be a nonlinear function of the state and the
measurement noise.

zk = h(xk, vk, t)

The Jacobian of the measurement with respect to the state is
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H(x) = ∂h
∂x .

The Jacobian of the measurement with respect to the measurement noise is

H(v) = ∂h
∂v .

These functions take simpler forms when the noise enters linearly into the measurement equation:

zk = h(xk, t) + vk

In this case, H(v) = 1N.

Extended Kalman Filter Loop
This extended kalman filter loop is almost identical to the linear Kalman filter loop except that:

• The exact nonlinear state update and measurement functions are used whenever possible and the
state transition matrix is replaced by the state Jacobian

• The measurement matrices are replaced by the appropriate Jacobians.
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Predefined Extended Kalman Filter Functions
Sensor Fusion and Tracking Toolbox provides predefined state update and measurement functions to
use in the extended Kalman filter.

Motion Model Function Name Function Purpose
Constant velocity constvel Constant-velocity state update

model
constveljac Constant-velocity state update

Jacobian
cvmeas Constant-velocity measurement

model
cvmeasjac Constant-velocity measurement

Jacobian
Constant acceleration constacc Constant-acceleration state

update model
constaccjac Constant-acceleration state

update Jacobian
cameas Constant-acceleration

measurement model
cameasjac Constant-acceleration

measurement Jacobian
Constant turn rate constturn Constant turn-rate state update

model
constturnjac Constant turn-rate state update

Jacobian
ctmeas Constant turn-rate

measurement model
ctmeasjac Constant-turnrate measurement

Jacobian

See Also
Objects
trackingEKF
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Introduction to Multiple Target Tracking

Background
Tracking is essential for the guidance, navigation, and control of autonomous systems. A tracking
system estimates targets (number of targets and their states) and evaluates the situational
environment in an area of interest by taking detections (kinematic parameters and attributes) and
tracking these targets with time. The simplest tracking system is a single target tracking (STT)
system in a clutterless environment, which assumes one target only in an area of interest. An STT
does not require data assignment or association, because the detection of the standalone target can
be directly fed to an estimator or filter used to estimate the state of the target.

Modern tracking systems usually involve multiple target tracking (MTT) systems, in which one or
more sensors generate multiple detections from multiple targets, and one or more tracks are used to
estimate the states of these targets. An MTT must assign detections to tracks before the detections
can be used to update the tracks. The MTT assignment problem is challenging because of several
factors:

• Target or detection distribution — If targets are sparsely distributed, then associating a target to
its corresponding detection is relatively easy. However, if targets or detections are densely
distributed, the assignment becomes ambiguous because assigning a target to a detection or a
nearby detection rarely makes any differences on the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target is detected
by the sensor if the target is within the field of view of the sensor. If the Pd of a sensor is small,
then the true target might not generate any detection during a sensor scan. As a result, the track
represented by the true target may steal detections from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish between
detections from two targets. If the sensor resolution is low, then two targets in proximity might
only give rise to one detection. This violates the common assumption that each detection can only
be assigned to one track and results in unresolvable assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible assignments
and therefore increase the complexity of data assignment.

• The number of targets and detections — The number of possible assignments increases
exponentially as the number of targets and detections increases. Therefore, obtaining an optimal
assignment requires more computations.

Elements of an MTT System
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The figure gives a structural representation of the functional elements of a simple recursive MTT
system [1]. In real world applications, the functions of these elements can overlap considerably.
However, this representation provides a convenient partitioning to introduce the typical functions in
an MTT system.

To interpret this diagram, assume a tracker has maintained confirmed or tentative tracks from the
previous scan. Now, the system considers whether to update tracks based on any new detections
received from sensors. To assign detections to the corresponding tracks:

1 The internal filter (such as a Kalman filter) predicts the confirmed or tentative tracks from the
previous step to the current step.

2 The tracker uses the predicted estimate and covariance to form a validation gate around the
predicted track.

3 The detections falling within the gate of a track are considered as candidates for assignment to
the track.

4 An assignment algorithm (based on the specific tracker, such as GNN or TOMHT) determines the
track-to-detection association.

5 Based on the assignment, the tracker executes track maintenance, including initialization,
confirmation, and deletion:

• Unassigned observations can initiate new tentative tracks.
• A tentative track becomes confirmed if the quality of the track satisfies the confirmation

criteria.
• Low-quality tracks are deleted based on the deletion criteria.

6 The new track set (tentative and confirmed) is predicted to the next scan step to form validation
gates.

Detections

Detection is a collective term used to refer to all the observed or measured quantities included in a
report output (see objectDetection for example) from a sensor. In general, an observation may
contain measured kinematic quantities (such as range, line of sight, and range-rate) and measured
attributes (such as target type, identification number, and shape). A detection should also contain the
time at which measurements are obtained.

For point target tracking, detections received from a single sensor scan can contain at most one
observation from each target. This assumption greatly simplifies the assignment problem. One sensor
can generate zero detections for a target within its field of view, because the probability of detection,
Pd, of each sensor is usually less than 1. Also, each sensor can generate false alarm detections that do
not correspond to true targets.

High-resolution sensors may generate multiple detections per target, which requires partitioning the
detections into one representative detection before feeding to assignment-based trackers (such as
trackerGNN, trackerJPDA, and trackerTOMHT). See “Extended Object Tracking and Performance
Metrics Evaluation” for more details.

Gating and Assignment

For details about gating and assignment, see “Introduction to Assignment Methods in Tracking
Systems” on page 3-33, which provides a comprehensive introduction of assignment methods. This
section only covers the basics of gating and assignment used in the three assignment-based trackers,
trackerGNN, trackerJPDA, and trackerTOMHT.
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Gating is a screening mechanism used to determine which detections are valid candidates to update
existing tracks. The purpose of gating is to reduce unnecessary computation in track-to-detection
assignment. A validation gate of a predicted track is formed using the predicted state and its
associated covariance, such that the detections with high probability of association fall within the
validation gate of a track. Only the detections within the gate of a track are considered for
assignment with the track.

After gating, the assignment function determines which track-to-detection assignments to make.
Three methods of assignment are used with three trackers in the toolbox:

• trackerGNN — Global nearest data association. Based on likelihood theory, the goal of the GNN
method is to minimize an overall distance function that considers all track-to-detection
assignments.

• trackerJPDA — Joint probability data association. The JPDA method applies a soft assignment,
such that detections within the validation gate of a track can all make weighted contributions to
the track based on their probability of association.

• trackerTOMHT — Track-oriented multiple hypothesis tracking. Unlike GNN and JPDA, MHT is a
deferred decision approach, which allows difficult data association situations to be postponed until
more information is received.

The decision of which tracker to use depends on the type of targets and computational resources
available:

• The GNN algorithm is the simplest to employ. It has low computational cost and can result in
adequate performance for tracking sparsely distributed targets.

• The JPDA algorithm, which requires more computational cost, is also applicable for widely spaced
targets. It usually performs better in a clutter environment than GNN.

• The TOMHT tracker, which requires heavily on computational resources, normally results in the
best performance among all the three trackers, especially for densely distributed targets.

For more details, see the “Tracking Closely Spaced Targets Under Ambiguity” example for a
comparison of these three trackers.

Track Maintenance

Track maintenance refers to the function of track initiation, confirmation, and deletion.

Track Initiation. When a detection is not assigned to an existing track, a new track might need to be
created:

• The GNN approach starts new tentative tracks on observations that are not assigned to existing
tracks.

• The JPDA approach starts new tentative tracks on observations with probability of assignment
lower than a specified threshold.

• The MHT approach starts new tentative tracks on observations whose distances to existing tracks
are larger than a specified threshold. The tracker uses subsequent data to determine which of
these newly initiated tracks are valid.

Track Confirmation. Once a tentative track is formed, a confirmation logic identifies the status of the
track. Three track confirmation logics are used in the toolbox:
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• History Logic: A track is confirmed if the track has been assigned to a detection for at least M
updates during the last N updates. You can set the specific values for M and N. trackerGNN and
trackerJPDA use this logic.

• Track Score Logic: A track is confirmed if its score is higher than a specified threshold. A higher
track score means that the track is more likely to be valid. The score is the ratio of the probability
that the track is from a real target to the probability that the track is false. trackerGNN and
trackerTOMHT use this logic.

• Integrated Logic: A track is confirmed if its integrated probability of existence is higher than a
threshold. trackerJPDA uses this logic.

Track Deletion. A track is deleted if it is not updated within some reasonable time. The track deletion
criteria are similar to the track confirmation criteria:

• History Logic: A track is deleted if the track has not been assigned to a detection at least P times
during last R updates.

• Track Score Logic: A track is deleted if its score decreases from the maximum score by a specified
threshold.

• Integrated Logic: A track is deleted if its integrated probability of existence is lower than a
specified threshold.

For more details, see the “Introduction to Track Logic” example.

Filtering

The main functions of a tracking filter are:

1 Predict tracks to the current time.
2 Calculate distances from the predicted tracks to detections and the associated likelihoods for

gating and assignment.
3 Correct the predicted tracks using assigned detections.

Sensor Fusion and Tracking Toolbox offers multiple tracking filters that can be used with the three
assignment-based trackers (trackerGNN, trackerJPDA, and trackerTOMHT). For a comprehensive
introduction of these filters, see “Introduction to Estimation Filters” on page 3-9.

Tracking Metrics
Sensor Fusion and Tracking Toolbox provides tools to analyze the tracking performance if the truths
are known:

• You can use trackAssignmentMetrics to evaluate the performance of track assignment and
maintenance. trackAssignmentMetrics provides indexes such as number of the track swaps,
number of divergence steps, and number of redundant assignments.

• You can use trackErrorMetrics to evaluate the accuracy of tracking. trackErrorMetrics
provides multiple root mean square (RMS) error values, which numerically illustrate the accuracy
performance of the tracker.

• You can use trackOSPAMetric to compute the optimal subpattern assignment metric.
trackErrorMetrics provides three scalar error components — localization error, labelling error,
and cardinality error to evaluate tracking performance.
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Non-Assignment-Based Trackers
trackerGNN, trackerJPDA, and trackerTOMHT are assignment-based trackers, meaning that the
track-to-detection assignment is required. The toolbox also offers a random finite set (RFS) based
tracker, trackerPHD. You can use its supporting features ggiwphd to track extended objects and
gmphd to track both extended objects and point targets.

See Also
ggiwphd | gmphd | objectDetection | trackerGNN | trackerJPDA | trackerPHD |
trackerTOMHT

References
[1] Blackman, S., and R. Popoli. Design and Analysis of Modern Tracking Systems. Artech House

Radar Library, Boston, 1999.

[2] Musicki, D., and R. Evans. "Joint Integrated Probabilistic Data Association: JIPDA." IEEE
transactions on Aerospace and Electronic Systems . Vol. 40, Number 3, 2004, pp. 1093 –1099.

[3] Werthmann, J. R.. "Step-by-Step Description of a Computationally Efficient Version of Multiple
Hypothesis Tracking." In International Society for Optics and Photonics, Vol. 1698, pp. 228 –
301, 1992.

3 Multi-Object Tracking

3-32



Introduction to Assignment Methods in Tracking Systems

Background
In a multiple target tracking (MTT) system, one or more sensors generate multiple detections from
multiple targets in a scan. To track these targets, one essential step is to assign these detections
correctly to the targets or tracks maintained in the tracker so that these detections can be used to
update these tracks. If the number of targets or detections is large, or there are conflicts between
different assignment hypotheses, assigning detections is challenging.

Depending on the dimension of the assignment, assignment problems can be categorized into:

• 2-D assignment problem – assigns n targets to m observations. For example, assign 5 tracks to 6
detections generated from one sensor at one time step.

• S-D assignment problem – assigns n targets to a set (m1, m2, m3, …) of observations. For example,
assign 5 tracks to 6 detections from one sensor, and 4 detections from another sensor at the same
time. This example is a typical 3-D assignment problem.

To illustrate the basic idea of an assignment problem, consider a simple 2-D assignment example. One
company tries to assign 3 jobs to 3 workers. Because of the different experience levels of the workers,
not all workers are able to complete each job with the same effectiveness. The cost (in hours) of each
worker to finish each job is given by the cost matrix shown in the table. An assignment rule is that
each worker can only take one job, and one job can only be taken by one worker. To guarantee
efficiency, the object of this assignment is to minimize the total cost.

Worker Job
1 2 3

1 41 72 39
2 22 29 49
3 27 39 60

Since the numbers of workers and jobs are both small in this example, all the possible assignments
can be obtained by enumeration, and the minimal cost solution is highlighted in the table with
assignment pairs (1, 3), (2, 2) and (3, 1). In practice, as the size of the assignment becomes larger,
the optimal solution is difficult to obtain for 2-D assignment. For an S-D assignment problem, the
optimal solution may not be obtainable in practice.

2-D Assignment in Multiple Target Tracking
In the 2-D MTT assignment problem, a tracker tries to assign multiple tracks to multiple detections.
Other than the dimensionality challenge mentioned above, a few other factors can significantly
change the complexity of the assignment:

• Target or detection distribution — If targets are sparsely distributed, associating a target to its
corresponding detection is relatively easy. However, if targets or detections are densely
distributed, assignments become ambiguous because assigning a target to a detection or another
nearby detection rarely makes any differences on the cost.

• Probability of detection (Pd) of the sensor — Pd describes the probability that a target is detected
by the sensor if the target is within the field of view of the sensor. If the Pd of a sensor is small,
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then the true target may not give rise to any detection during a sensor scan. As a result, the track
represented by the true target may steal detections from other tracks.

• Sensor resolution — Sensor resolution determines the sensor’s ability to distinguish the detections
from two targets. If the sensor resolution is low, then two targets in proximity may only give rise
to one detection. This violates the common assumption that each detection can only be assigned to
one track and results in unresolvable assignment conflicts between tracks.

• Clutter or false alarm rate of the sensor — False alarms introduce additional possible assignments
and therefore increase the complexity of data assignment.

The complexity of the assignment task can determine which assignment methods to apply. In Sensor
Fusion and Tracking Toolbox toolbox, three 2-D assignment approaches are employed corresponding
to three different trackers:

• trackerGNN — adopts a global nearest data assignment approach
• trackerJPDA — adopts a joint probability data association approach
• trackerTOMHT — adopts a tracker-oriented multiple hypothesis tracking approach

Note that each tracker processes the data from sensors sequentially, meaning that each tracker only
deals with the assignment problem with the detections of one sensor at a time. Even with this
treatment, there may still be too many assignment pairs. To reduce the number of track and detection
pairs considered for assignment, the gating technique is frequently used.

Gating

Gating is a screening mechanism to determine which observations are valid candidates to update
existing tracks and eliminate unlikely detection-to-track pairs using the distribution information of
the predicted tracks. To establish the validation gate for a track at the current scan, the estimated
track for the current step is predicted from the previous step.

For example, a tracker confirms a track at time tk and receives several detections at time tk+1. To form
a validation gate at time tk+1, the tracker first needs to obtain the predicted measurement as:

y k + 1 = h(x k + 1 k)
where  is the track estimate predicted from time tk and  is the measurement model
that outputs the expected measurement given the track state. The observation residual vector is

y = yk + 1− y k + 1
where yk+1 is the actual measurement. To establish the boundary of the gate, the detection residual
covariance S is used to form an ellipsoidal validation gate. The ellipsoidal gate that establishes a
spatial ellipsoidal region in the measurement space is defined in Mahalanobis distance as:
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d2(yk + 1) = yTS−1y ≤ G
where G is the gating threshold which you can specify based on the assignment requirement.
Increasing the threshold can incorporate more detections into the gate.

After the assignment gate is established for each track, the gating status of each detection yi (i = 1,
…,n) can be determined by comparing its Mahalanobis distance d2 (yi) with the gating threshold G. If
d2 (yi) < G, then detection yi is inside the gate of the track and will be considered for association.
Otherwise, the possibility of the detection associated with the track is removed. In Figure 1, T1
represents a predicted track estimate, and O1 – O6 are six detections. Based on the gating result, O1,
O2, and O3 are within the validation gate in the figure.

Global Nearest Neighbor (GNN) Method

The GNN method is a single hypothesis assignment method. For each new data set, the goal is to
assign the global nearest observations to existing tracks and to create new track hypotheses for
unassigned detections.

The GNN assignment problem can be easily solved if there are no conflicts of association between
tracks. The tracker only needs to assign a track to its nearest neighbor. However, conflict situations
(see Figure 2) occur when there is more than one observation within a track’s validation gate or an
observation is in the gates of more than one track. To resolve these conflicts, the tracker must
evaluate a cost matrix.
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The elements of a cost matrix for the GNN method includes the distance from tracks to detections
and other factors you might want to consider. For example, one approach is to define a generalized
statistical distance between observation j to track i as:

Ci j = di j + ln( Si j )
where dij is the Mahalanobis distance and ln(|Sij|), the logarithm of the determinant of the residual
covariance matrix, is used to penalize tracks with greater prediction uncertainty.

For the assignment problem given in Figure 2, the following table shows a hypothetical cost matrix.
The nonallowed assignments, which failed the gating test, are denoted by X. (In practice, the costs of
nonallowed assignments can be denoted by large values, such as 1000.)

Tracks Observations
O1 O2 O3 O4

T1 9 6 X 6
T2 X 3 10 X
T2 8 4 X X

For this problem, the highlighted optimal solution can be found by enumeration. Detection O3 is
unassigned, so the tracker will use it to create a new tentative track. For more complicated GNN
assignment problems, more accurate formulations and more efficient algorithms to obtain the optimal
or suboptimal solution are required.

A general 2-D assignment problem can be formed as following. Given the cost matrix element Cij, find
an assignment Z = {zij} that minimizes
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J = ∑
i = 0

n
∑

j = 0

m
Ci jzi j

subject to two constraints:

∑
i = 0

m
zi j = 1, ∀ j

∑
j = 0

n
zi j = 1, ∀i

If track i is assigned to observation j, then zij = 1. Otherwise, zij = 0. zi0 = 1 represents the hypothesis
that track i is not assigned to any detection. Similarly, z0j = 1 represents the hypothesis that
observation j is not assigned to any track. The first constraint means each detection can be assigned
to no more than one track. The second constraint means each track can be assigned to no more than
one detection.

Sensor Fusion and Tracking Toolbox provides multiple functions to solve 2-D GNN assignment
problems:
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• assignmunkres – Uses the Munkres algorithm, which guarantees an optimal solution but may
require more calculation operations.

• assignauction – Uses the auction algorithm, which requires fewer operations but can possibly
converge on an optimal or suboptimal solution.

• assignjv – Uses the Joker-Volgenant algorithm, which also converges on an optimal or
suboptimal solution but usually with a faster converging speed.

In trackerGNN, you can select the assignment algorithm by specifying the Assignment property.

K Best Solutions to the 2-D Assignment Problem

Because of the uncertainty nature of assignment problems, only obtaining a solution (optimal or
suboptimal) may not be sufficient. To account for multiple hypotheses about the assignment between
tracks and detections, multiple suboptimal solutions are required. These suboptimal solutions are
called K best solutions to the assignment problem.

The K best solutions are usually obtained by varying the solution obtained by any of the previously
mentioned assignment functions. Then, at the next step, the K best solution algorithm removes one
track-to-detection pair in the original solution and finds the next best solution. For example, for this
cost matrix:
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10 5 8 9
7 × 20 ×
×
×

21
15

×
17

×
×

× × 16 22
each row represents the cost associated with a track, and each column represents the cost associated
with a detection. As highlighted, the optimal solution is (7,15,16, 9) with a cost of 47. In the next step,
remove the first pair (corresponding to 7), and the next best solution is (10,15, 20, 22) with a cost of
67. After that, remove the second pair (corresponding to 15), and the next best solution is (7, 5,16, 9)
with a cost of 51. After a few steps, the five best solutions are:

Solution Cost
(7,15,16, 9) 47
(7,5,17, 22) 51
(7,15, 8, 22) 52
(7, 21,16, 9) 53
(7, 21,17, 9) 53

See the “Find Five Best Solutions Using Assignkbest” example, which uses the assignkbest
function to find the K best solutions.
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Joint Probability Data Association (JPDA) Method

While the GNN method makes a rigid assignment of a detection to a track, the JPDA method applies a
soft assignment so that detections within the validation gate of a track can all make weighted
contributions to the track based on their probability of association.

For example, for the gating results shown in Figure 1, a JPDA tracker calculates the possibility of
association between track T1 and observations O1, O2, and O3. Assume the association probability of

these three observations are p11, p12, and p13, and their residuals relative to track T1 are , , and

, respectively. Then the weighted sum of the residuals associated with track T1 is:

y1 = ∑
j = 1

3
p1 jy1 j

In the tracker, the weighted residual is used to update track T1 in the correction step of the tracking
filter. In the filter, the probability of unassignment, p10, is also required to update track T1. For more
details, see “JPDA Correction Algorithm for Discrete Extended Kalman Filter”.

The JPDA method requires one more step when there are conflicts between assignments in different
tracks. For example, in the following figure, track T2 conflicts with T1 on the assignment of
observation O3. Therefore, to calculate the association probability p13, the joint probability that T2 is
not assigned to O3 (that is T2 is assigned to O6 or unassigned) must be accounted for.
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Track-Oriented Multiple Hypothesis Tracking (TOMHT) Method

Unlike the JPDA method, which combines all detections within the validation gate using a weighted
sum, the TOMHT method generates multiple hypotheses or branches of the tracks based on the
detections within the gate and propagates high-likelihood branches between scan steps. After
propagation, these hypotheses can be tested and pruned based on the new set of detections.

For example, for the gating scenario shown in Figure 1, a TOMHT tracker considers the following
four hypotheses:

• Assign no detection to T1 resulting in hypothesis T10

• Assign O1 to T1 resulting in hypothesis T11

• Assign O2 to T1 resulting in hypothesis T12

• Assign O3 to T1 resulting in hypothesis T13

Given the assignment threshold, the tracker will calculate the possibility of each hypothesis and
discard hypotheses with probability lower than the threshold. Hypothetically, if only p10 and p11 are
larger than the threshold, then only T10 and T11 are propagated to the next step for detection update.

S-D Assignment in Multiple Target Tracking
In an S-D assignment problem, the dimension of assignment S is larger than 2. Note that all three
trackers (trackerGNN, trackerJPDA, and trackerTOMHT) process detections from each sensor
sequentially, which results in a 2-D assignment problem. However, some applications require a
tracker that processes simultaneous observations from multiple sensor scans all at once, which
requires solving an S-D assignment problem. Meanwhile, the S-D assignment is widely used in
tracking applications such as static data fusion, which preprocesses the detection data before fed to a
tracker.

An S-D assignment problem for static data fusion has S scans of a surveillance region from multiple
sensors simultaneously, and each scan consists of multiple detections. The detection sources can be
real targets or false alarms. The object is to detect an unknown number of targets and estimate their
states. For example, as shown in the Figure 4, three sensor scans produce six detections. The
detections in the same color belong to the same scan. Since each scan generates two detections,
there are probably two targets in the region of surveillance. To choose between different assignment
or association possibilities, evaluate the cost matrix.
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The calculation of the cost can depend on many factors, such as the distance between detections and
the covariance distribution of each detection. To illustrate the basic concept, the assignment costs for
a few hypotheses are hypothetically given in the table [1].

Assignment
Hypotheses

First Scan
Observations (O1x)

Second Scan
Observation (O2x)

Third Scan
Observation (O3x)

Cost

1 0 1 1 −10.2
2 1 2 0 −10.9
3 1 1 1 −18.0
4 1 1 2 −14.8
5 1 2 1 −17.0
6 2 0 1 −13.2
7 2 0 2 −10.6
8 2 2 0 −11.1
9 2 1 2 −14.1
10 2 2 2 −16.7

In the table, 0 denotes a track is associated with no detection in that scan. Assume the hypotheses
not shown in the table are truncated by gating or neglected because of high costs. To concisely
represent each track, use cijk to represent the cost for association of observation i in scan 1, j in scan
2, and k in scan 3. For example, for the assignment hypothesis 1, c011 = -10.2. Several track
hypotheses conflict with other in the table. For instance, the two most likely assignments, c111 and
c121 are incompatible because they share the same observation in scans 1 and 3.

The goal of solving an S-D assignment problem is to find the most likely compatible assignment
hypothesis accounting for all the detections. When S ≥ 3, however, the problem is known to scale
with the number of tracks and detections at an exponential rate (NP-hard). The Lagrangian relaxation
method is commonly used to obtain the optimal or sub-optimal solution for an S-D assignment
problem efficiently.
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Brief Introduce to the Lagrangian Relaxation Method for 3-D Assignment

Three scans of data have a number of M1, M2, and M3 observations, respectively. Denote an
observation of scan 1, 2, and 3 as i, j, and k, respectively. For example, i = 1, 2, …, M1. Use zijk to
represent the track formation hypothesis of O1i, O2j, and O3k. If the hypothesis is valid, then zijk = 1;
otherwise, zijk = 0. As mentioned, cijk is used to represent the cost of zijk association. cijk is 0 for false
alarms and negative for possible associations. The S-D optimization problem can be formulated as:

J(z) = min
i, j, k

∑
i = 0

M1
∑

j = 0

M2
∑

k = 0

M3
ci jkzi jk

subject to three constraints:

∑
i = 0

M1
∑

j = 0

M2
zi jk = 1, ∀k = 1, 2, …, M3

∑
i = 0

M1
∑

k = 0

M3
zi jk = 1, ∀ j = 1, 2, …, M2

∑
j = 0

M2
∑

k = 0

M3
zi jk = 1, ∀i = 1, 2, …, M1

The optimization function chooses associations to minimize the total cost. The three constraints
ensure that each detection is accounted for (either included in an assignment or treated as false
alarm).

The Lagrangian relaxation method approaches this 3-D assignment problem by relaxing the first
constraint using Lagrange multipliers. Define a new function L(λ) :

L(λ) = ∑
k = 0

M3
λk ∑

i = 0

M1
∑

j = 0

M2
zi jk− 1

 Introduction to Assignment Methods in Tracking Systems

3-43



where λk, k = 1, 2, …, M3 are Lagrange multipliers. Subtract L from the original object function J(z) to
get a new object function, and the first constraint in k is relaxed. Therefore, the 3-D assignment
problem reduces to a 2-D assignment problem, which can be solved by any of the 2-D assignment
method. For more details, see [1].

The Lagrangian relaxation method allows the first constraint to be mildly violated, and therefore can
only guarantee a suboptimal solution. For most applications, however, this is sufficient. To specify the
solution accuracy, the method uses the solution gap, which defines the difference between the current
solution and the potentially optimistic solution. The gap is nonnegative, and a smaller solution gap
corresponds to a solution closer to the optimal solution.

Sensor Fusion and Tracking Toolbox provides assignsd to solve for S-D assignment using the
Lagrangian relaxation method. Similar to the K best 2-D assignment solver assignkbest, the
toolbox also provides a K best S-D assignment solver, assignkbestsd, which is used to provide
multiple suboptimal solutions for an S-D assignment problem.

See “Tracking Using Distributed Synchronous Passive Sensors” for the application of S-D assignment
in static detection fusion.

See Also
assignTOMHT | assignauction | assignjv | assignkbest | assignkbestsd | assignmunkres |
assignsd | trackerGNN | trackerJPDA | trackerTOMHT
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Introduction to Track-To-Track Fusion
Track-To-Track Fusion Versus Central-Level Tracking
A multiple sensor tracking system can provide better performance than a single sensor system
because it can provide broader coverage and better visibility. Moreover, fusing detections from
different types of sensors can also improve the quality and accuracy of the target estimates. Two
types of architecture are commonly used in a multiple sensor tracking system. In the first type of
architecture — central-level tracking — the detections from all the sensors are sent directly to a
tracking system that maintains tracks based on all the detections. Theoretically, the central-level
tracking architecture can achieve the best performance because it can fully use all the information
contained in the detections. However, you can also apply a hierarchical structure with sensor-level
tracking combined with track-level fusion for a multiple sensor system. The figure shows a typical
central-level tracking system and a typical track-to-track fusion system based on sensor-level tracking
and track-level fusion.

To represent each element in a track-to-track fusion system, call tracking systems that output tracks
to a fuser as sources, and call the outputted tracks from sources as source tracks or local tracks. Call
the tracks maintained in the fuser as central tracks.

Benefits and Challenges of Track-To-Track Fusion
In some cases, a track-to-track fusion architecture may be preferable to a central-level tracking
architecture. These cases include:

• In many applications, a tracking system not only needs to track targets in its environment for self-
navigation, but also needs to transfer its maintained tracks to surrounding tracking systems for
better overall navigation performance. For example, an autonomous vehicle that tracks its own
situational environment can also share the maintained tracks with other vehicles to facilitate their
navigation.

• In practice, many sensors directly output tracks instead of detections. Therefore, to combine
information from sensors that output tracks, the track-level fusion is required.

• When communication bandwidth is limited, transmitting a track list is often more efficient than
transmitting a set of detections. This can be particularly important for cases in which the track list
is provided at a reduced rate relative to the scan rate.

• When the number of sensors and detections is large, the computation complexity for the
centralized tracking system can be high, especially for detection assignment. The track-to-track
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fusion architecture can distribute some assignment and estimation workloads to the sensor-level
tracking, which reduces the computation complexity of the fuser.

Despite all the advantages favoring the track-to-track fusion architecture, it also poses additional
complexity and challenges to the tracking system. Unlike detections, which can be assumed to be
conditionally independent, the track estimates from each source are correlated with each other
because they share a common prediction error resulting from a common process model. Therefore,
computing a fused track using a standard filtering approach might lead to incorrect results. The
following effects must be considered:

• Common process noise — Since the sensors observe and track the same target, they share some
common dynamics. As a result, target maneuvering can lead to a mean error that is common to all
sensors.

• Time-correlated measurement noise — If the track fusion is repeated over time, the standard
Kalman filter assumption that measurements are not correlated over time is violated, because the
sensor-level track state estimation errors are correlated over time.

Track Fuser and Tracking Architecture
You can use the trackFuser in Sensor Fusion and Tracking Toolbox for the purpose of track-to-track
fusion. The trackFuser System object™ provides two algorithms to combine source tracks
considering the correction effects between different tracks. You can choose the algorithm by
specifying the StateFusion property of trackFuser as:

• 'Cross' — Uses the cross-covariance fusion algorithm.
• 'Intersection' — Uses the covariance intersection fusion algorithm.

You can also customize your own fusion algorithm.

Other than the standard track-to-track fusion architecture shown in the preceding figure, you can
also use other types of architectures with trackFuser. For example, the following figure illustrates a
two-vehicle tracking system.

On each vehicle, two sensors track the nearby targets with associated trackers. Each vehicle also has
a fuser that fuses source tracks from two trackers. Fuser 6 can transmit its maintained central tracks
to Fuser 3. With this architecture, Vehicle 1 can possibly identify targets (Target 2 in the figure) that
are not within the field of view of its own sensors.
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To reduce rumor propagation, you can treat the source tracks from Fuser 6 to Fuser 3 as external by
specifying the IsInternalSource property of fuserSourceConfiguration as false when
setting up the SourceConfigurations property of TrackFuser.

Since tracks reported by different trackers can be expressed in different coordinate frames, you need
to specify the coordinate transformation between a source and a fuser by specifying the
fuserSourceConfiguration property.

See Also
fuserSourceConfiguration | trackFuser | trackerGNN | trackerJPDA | trackerPHD |
trackerTOMHT

References
[1] Chong, C. Y., S. Mori, W. H. Barker, and K. C. Chang. "Architectures and Algorithms for Track

Association and Fusion." IEEE Aerospace and Electronic Systems Magazine, Vol. 15, No. 1,
2000, pp. 5 – 13.

 Introduction to Track-To-Track Fusion

3-47



Multiple Extended Object Tracking
In traditional tracking systems, the point target model is commonly used. In a point target model:

• Each object is modeled as a point without any spatial extent.
• Each object gives rise to at most one measurement per sensor scan.

Though the point target model simplifies tracking systems, the assumptions above may not be valid
when modern tracking systems are considered:

• In modern tracking systems, the dimensions of the extended object play a significant role. For
example, in autonomous vehicles, target dimensions must be considered properly to avoid
collision with objects around the autonomous system.

• Modern sensors have a high resolution, and an object can occupy more than one resolution cell.
As a result, the sensor may report multiple detections for that object. In this case, the point model
cannot fully exploit the sensor ability to detect object extent.

In extended object tracking, a sensor can return multiple detections per scan for an extended object.
The differences between extended object tracking and point object tracking are more about the
sensor properties rather than object properties. For example, if the resolution of a sensor is high
enough, even an object with small dimensions can still occupy several resolution cells of the sensor.

Sensor Fusion and Tracking Toolbox offers several methods and examples for multiple extended
object tracking. Depending on the assumptions made in the detection and tracker, these methods can
be separated into the following categories:

• One detection per object.

In this category, the conventional trackers (such as trackerGNN, trackerJPDA, and
trackerTOMHT) are used, which assume one detection per object. This category can further be
divided into two methods:

• A point detection per object.

In this method, even though the sensor returns multiple detections per object, these detections
are first converted into one representative point detection with certain covariance to account
for the distribution of these detections. Then the representative point detection is processed by
a conventional tracker, which models the object as a point target and tracks its kinematic state.
Even though this method is simple to use, it overlooks the ability of the sensor to detect the
object dimension.

The Point Object Tracker approach shown in the first part of “Extended Object Tracking and
Performance Metrics Evaluation” example adopts this method.

• An extended object detection per object.

In this method, the multiple detections of an extended object are converted into a single
parameterized shape detection. The shape detection includes the kinematic states of the
object, as well as its extent parameters such as length, width and height. Then the shape
detection is processed by a conventional tracker, which models the object as an extended
object by tracking both the object kinematic state and its dimensions.

In the “Track Vehicles Using Lidar: From Point Cloud to Track List” example, the Lidar
detections of each vehicle are converted into a cuboid detection with length, width, and height.
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A JPDA tracker is used to track the position, velocity and dimensions for all the vehicles with
these cuboid detections.

• Multiple detections per object.

In this category, extended object trackers (such as trackerPHD) are used, which assume multiple
detections per object. The detections are fed directly to the tracker, and the tracker models the
extended object using certain default geometric shapes with variable sizes.

In the “Extended Object Tracking and Performance Metrics Evaluation” example, the GGIW-PHD
Extended Object Tracker approach represents vehicle shapes as ellipses, and the Prototype
Extended Object Tracker approach represents vehicle shapes as rectangles.

In the “Marine Surveillance Using a PHD Tracker” example, the GGIW-PHD tracker models the
ship shapes as ellipses.
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Configure Time Scope MATLAB Object
When you use the timescope object in MATLAB®, you can configure many settings and tools from
the window. These sections show you how to use the Time Scope interface and the available tools.

Signal Display
This figure highlights the important aspects of the Time Scope window in MATLAB.

• Min X-Axis — Time scope sets the minimum x-axis limit using the value of the TimeDisplayOffset

property. To change the Time Offset from the Time Scope window, click Settings ( ) on the
Scope tab. Under Data and Axes, set the Time Offset.

• Max X-Axis — Time scope sets the maximum x-axis limit by summing the value of the Time
Offset property with the span of the x-axis values. If Time Span is set to Auto, the span of x-axis
is 10/SampleRate.

The values on the x-axis of the scope display remain the same throughout the simulation.
• Status — Provides the current status of the plot. The status can be:

• Processing — Occurs after you run the step function and before you run the release
function.
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• Stopped — Occurs after you create the scope object and before you first call the object. This
status also occurs after you call release.

• Title, YLabel — You can customize the title and the y-axis label from Settings or by using the
Title and YLabel properties.

• Toolstrip — The Scope tab contains buttons and settings to customize and share the time scope.
The Measurements tab contains buttons and settings to turn on different measurement tools.
Use the pin button  to keep the toolstrip showing or the arrow button  to hide the toolstrip.

Multiple Signal Names and Colors
By default, if the input signal has multiple channels, the scope uses an index number to identify each
channel of that signal. For example, the legend for a two-channel signal will display the default names

Channel 1, Channel 2. To show the legend, on the Scope tab, click Settings ( ). Under Display
and Labels, select Show Legend. If there are a total of seven input channels, the legend displayed
is:

By default, the scope has a black axes background and chooses line colors for each channel in a
manner similar to the Simulink® Scope block. When the scope axes background is black, it assigns
each channel of each input signal a line color in the order shown in the legend. If there are more than
seven channels, then the scope repeats this order to assign line colors to the remaining channels.
When the axes background is not black, the signals are colored in this order:

To choose line colors or background colors, on the Scope tab click Settings.Use the Axes color
pallet to change the background of the plot. Click Line to choose a line to change, and the Color
drop-down to change the line color of the selected line.

Configure Scope Settings
On the Scope tab, the Configuration section allows you to modify the scope.

• The Legend button turns the legend on or off. When you show the legend, you can control which
signals are shown. If you click a signal name in the legend, the signal is hidden from the plot and
shown in grey on the legend. To redisplay the signal, click on the signal name again. This button
corresponds to the ShowLegend property in the object.
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• The Settings button opens the settings window which allows you to customize the data, axes,
display settings, labels, and color settings.

On the Scope tab, the Layout section allows you to modify the scope layout dimensions.

The Display Grid button enables you to select the display layout of the scope.

Use timescope Measurements
All measurements are made for a specified channel. By default, measurements are applied to the first
channel. To change which channel is being measured, use the Select Channel drop-down on the
Measurements tab.

Data Cursors

Use the Data Cursors button to display screen cursors. Each cursor tracks a vertical line along the
signal. The difference between x- and y-values of the signal at the two cursors is displayed in the box
between the cursors.
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Signal Statistics

Use the Signal Statistics button to display various statistics about the selected signal at the bottom
of the time scope window. You can hide or show the Statistics panel using the arrow button  in the
bottom right of the panel.

• Max — Maximum value within the displayed portion of the input signal.
• Min — Minimum value within the displayed portion of the input signal.
• Peak to Peak — Difference between the maximum and minimum values within the displayed

portion of the input signal.
• Mean — Average or mean of all the values within the displayed portion of the input signal.
• Median — Median value within the displayed portion of the input signal.
• RMS — Root mean squared of the input signal.

To customize which statistics are shown and computed, use the Signal Statistics drop-down.
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Peak Finder

Use the Peak Finder button to display peak values for the selected signal. Peaks are defined as a
local maximum where lower values are present on both sides of a peak. End points are not considered
peaks. For more information on the algorithms used, see the findpeaks function.
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When you turn on the peak finder measurements, an arrow appears on the plot at each maxima and a
Peaks panel appears at the bottom of the timescope window showing the x and y values at each
peak.

You can customize several peak finder settings:

• Num Peaks — The number of peaks to show. Must be a scalar integer from 1 through 99.
• Min Height — The minimum height difference between a peak and its neighboring samples.
• Min Distance — The minimum number of samples between adjacent peaks.
• Threshold — The level above which peaks are detected.
• Label Peaks — Show labels (P1, P2, …) above the arrows on the plot.

Share or Save the Time Scope
If you want to save the time scope for future use or share it with others, use the buttons in the Share
section of the Scope tab.

• Generate Script — Generate a script to re-create your time scope with the same settings. An
editor window opens with the code required to re-create your timescope object.

• Copy Display — Copy the display to your clipboard. You can paste the image in another program
to save or share it.

• Print — Opens a print dialog box from which you can print out the plot image.

Scale Axes
To scale the plot axes, you can use the mouse to pan around the axes and the scroll button on your
mouse to zoom in and out of the plot. Additionally, you can use the buttons that appear when you
hover over the plot window.

•
 — Maximize the axes, hiding all labels and insetting the axes values.

•
 — Zoom in on the plot.

•
 — Pan the plot.

•
 — Autoscale the axes to fit the shown data.

See Also
Objects
timescope

 Configure Time Scope MATLAB Object

3-55




	Tracking Scenarios
	Tracking Simulation Overview
	Creating a Tracking Scenario
	Create Tracking Scenario with Two Platforms

	Radar Detections
	Simulate Radar Detections
	Create Radar Sensor
	Detector Input
	Radar Sensor Coordinate Systems
	INS
	Detections


	Multi-Object Tracking
	Tracking and Tracking Filters
	Multi-Object Tracking
	Multi-Object Tracker Properties

	Introduction to Estimation Filters
	Background
	Filter Design
	Estimation Filters in Sensor Fusion and Tracking Toolbox
	How to Choose a Tracking Filter

	Linear Kalman Filters
	State Equations
	Measurement Models
	Linear Kalman Filter Equations
	Filter Loop
	Constant Velocity Model
	Constant Acceleration Model

	Extended Kalman Filters
	State Update Model
	Measurement Model
	Extended Kalman Filter Loop
	Predefined Extended Kalman Filter Functions

	Introduction to Multiple Target Tracking
	Background
	Elements of an MTT System
	Tracking Metrics
	Non-Assignment-Based Trackers

	Introduction to Assignment Methods in Tracking Systems
	Background
	2-D Assignment in Multiple Target Tracking
	S-D Assignment in Multiple Target Tracking

	Introduction to Track-To-Track Fusion
	Track-To-Track Fusion Versus Central-Level Tracking
	Benefits and Challenges of Track-To-Track Fusion
	Track Fuser and Tracking Architecture

	Multiple Extended Object Tracking
	Configure Time Scope MATLAB Object
	Signal Display
	Multiple Signal Names and Colors
	Configure Scope Settings
	Use timescope Measurements
	Share or Save the Time Scope
	Scale Axes



